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Motion aftereffect
• If you stare at something that contains motion, and then look at 

something that’s stationary, you perceive illusory motion in the opposite 
direction

First described by Aristotle 

(384–322 BC)

Then by Lucretius 

(99–55 BC)
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Motion aftereffect

Addams, R. (1834). An account of a 
peculiar optical phænomenon 
seen after having looked at a 
moving body. London and 
Edinburgh Philosophical 
Magazine and Journal of Science,
5, 373–4.

Fall of Foyers
https://www.youtube.com/watch?v=6MK9qQ_ApHQ
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Motion aftereffect

Storm Illusion               https://www.youtube.com/watch?v=OAVXHzAWS60

Motion aftereffect

Storm Illusion               https://www.youtube.com/watch?v=OAVXHzAWS60
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Motion aftereffect

Wohlgemuth (1911)

Direction-selective cells in visual cortex

Hubel & Wiesel (1959): Neuron in cat primary visual cortex (V1)

Hubel & Wiesel (1968): Neuron in monkey primary visual cortex (V1)
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Adaptation of direction-selective neurons
Vautin & Berkley (1977): Neuron in cat primary visual cortex (V1)

Time

A
ve

ra
ge

 r
es

po
ns

e

Blank screen Pattern moving 
in preferred 

direction

Blank screen

• Presentation of motion with neuron’s preferred direction causes 
substantial adaptation

Adaptation of direction-selective neurons
Vautin & Berkley (1977): Neuron in cat primary visual cortex (V1)
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• Presentation of pattern with neuron’s anti-preferred direction (i.e., 
opposite to preferred direction) generates a weaker response, and less 
adaptation

• This suggests that adaptation results from responding strongly
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Sutherland’s (1961) “Ratio model” of MAE

• Before adaptation, neurons selective for leftward and rightward motion 
are equally responsive

• Perceived motion direction depends on relative activity of neurons 
tuned to opposite directions of motion

RL

Before 
adaptation

R
es

po
ns

e L = Neurons selective for 
leftward motion

R = Neurons selective for 
rightward motion

• Prolonged exposure to rightward motion stimulates rightward-selective 
neurons more than leftward-selective neurons 

RL

During 
adaptation

• Greater response of leftward-selective neurons interpreted as leftward 
motion

• After adaptation, rightward-selective neurons are less responsive than 
leftward-selective neurons

RL

After 
adaptation

Sutherland’s (1961) “Ratio model”
• “the direction in which something is seen to move might depend upon 

the ratios of firing in cells sensitive to movement in different directions.”

• In fact, all modern models of motion perception involve a difference
between responses of cells selective for motion in opposite directions

L – R

Leftward

motion detector

Rightward

motion detector

Direction 
selectivity (V1)

Motion 
opponency

Perception

• Differencing operation compares 
responses of leftward and 
rightward motion detectors
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Representing negative numbers in the brain

L – R R – L

RL RL

• Do the subtraction both ways

• If the subtraction gives a negative number, the output will be zero

• The L – R unit responds to positive values of L – R

• The R – L unit responds to negative values of L – R

Representing negative numbers in the brain

L – R R – L

R = 6L = 10 R = 6L = 10

• Do the subtraction both ways

4 spikes 0 spikes

• If the subtraction gives a negative number, the output will be zero

• The L – R unit responds to positive values of L – R

• The R – L unit responds to negative values of L – R
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Representing negative numbers in the brain

L – R R – L

R = 10L = 6 R = 10L = 6

• Do the subtraction both ways

• If the subtraction gives a negative number, the output will be zero

• The L – R unit responds to positive values of L – R

• The R – L unit responds to negative values of L – R

0 spikes 4 spikes

• In models of the brain, it’s simpler to let the response values go negative

Outline of model of motion perception

L – R

Leftward

motion detector

Rightward

motion detector

Direction 
selectivity (V1)

Motion 
opponency

Perception

• Not just leftward and rightward motion detectors – opponent pairs 
tuned to each direction

• How are motion detectors constructed?
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Werner Reichardt

• German Radio engineer

• Pioneered application of 
engineering principles to 
neuroscience

(1924–1992)

• Most famous for developing a 
model of motion detection in the 
fly: the “Reichardt detector”
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Rightward motion
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Photoreceptors

Multiplication

Rightward motion

0 spikes 10 spikes

10 spikes

0 spikes

Delay

Photoreceptors

Multiplication

Delay

Rightward motion

0 spikes 10 spikes

10 spikes

100 spikes
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Photoreceptors

Multiplication

Rightward motion
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Photoreceptors

Multiplication

Rightward motion

0 spikes 0 spikes

10 spikes

0 spikes

Delay

Photoreceptors

Multiplication

Rightward motion

0 spikes 0 spikes

0 spikes

0 spikes

Delay

• Short delay to detect fast motion

• Long delay to detect slow motion
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Photoreceptors

Multiplication

Rightward motion

Delay Delay

Leftward motion

Photoreceptors

Multiplication

Rightward motion

Delay Delay

Leftward motion

L – ROpponency 
(subtraction)

Reichardt detector (Reichardt, 1957, 1961)
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Aliasing

• Happens with movies of periodic patterns when the temporal sampling 
is too coarse (not enough frames per second)

• With Reichardt motion detector, we can also get aliasing in real-world 
vision (i.e. not movies) when the delay is too long, or the spatial 
sampling is too coarse (photoreceptors too far apart)

• This is a good model of motion perception in insects because there is 
evidence that aliasing occurs in insect vision 

• One theory of why zebras have their stripes is that the periodic stripe 
pattern gives rise to aliasing in the visual systems of biting insects, 
making them less likely to land on the zebra (How & Zanker, 2014)

• But humans and other mammals show little evidence of aliasing

• van Santen & Sperling (1984) introduced a fix to the Reichardt 
detector to prevent aliasing

• “Elaborated Reichardt detector”

Lion Attack Zebra || Wild Animal Attack 
https://www.youtube.com/watch?v=H1NTLhwSDpw
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Aliasing

• Happens with movies of periodic patterns when the temporal sampling 
is too coarse (not enough frames per second)

• With Reichardt motion detector, we can also get aliasing in real-world 
vision (i.e. not movies) when the delay is too long, or the spatial 
sampling is too coarse (photoreceptors too far apart)

• This is a good model of motion perception in insects because there is 
evidence that aliasing occurs in insect vision 

• One theory of why zebras have their stripes is that the periodic stripe 
pattern gives rise to aliasing in the visual systems of biting insects, 
making them less likely to land on the zebra (How & Zanker, 2014)

• But humans and other mammals show little evidence of aliasing

• van Santen & Sperling (1984) introduced a fix to the Reichardt 
detector to prevent aliasing

• “Elaborated Reichardt detector”

Photoreceptors

Multiplication

Rightward motion

Delay Delay

Leftward motion
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Photoreceptors

Multiplication

Rightward motion

Delay Delay

Leftward motion

Input receptive fields 
have same location, 
but different phase

Adelson & Bergen (1985)

Edward H. Adelson
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Space-time

from Adelson & Bergen (1985)

• Motion is tilt in space-time

x

t

• We can detect it using analogous methods to 
processing orientation in space

• Need receptive fields that are tiled in space-
time

Space-time

Donnie Darko, 2001



23

Space-time

from Adelson & Bergen (1985)

• Motion is tilt in space-time

x

t

• We can detect it using analogous methods to 
processing orientation in space

• Need receptive fields that are tiled in space-
time

Spatiotemporal receptive fields

• In reality, a neuron has a preferred “movie”, the 
“spatiotemporal receptive field”

• Spatial receptive field gives the neuron’s preferred image

(See DeAngelis, Ohzawa & Freeman, 1993)

http://ohzawa-lab.bpe.es.osaka-u.ac.jp/ohzawa-
lab/teaching/RF/XTinseparable.html
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Spatiotemporal receptive fields

• In reality, a neuron has a preferred “movie”, the 
“spatiotemporal receptive field”

• Spatial receptive field gives the neuron’s preferred image

(See DeAngelis, Ohzawa & Freeman, 1993)

http://ohzawa-lab.bpe.es.osaka-u.ac.jp/ohzawa-
lab/teaching/RF/XTinseparable.html
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Energy model (Adelson & Bergen, 1985)

• At each point in the image, 
have simple cells with four 
types of receptive field

x

t

x x x

t t t

• Put each neuron’s output 
through a squaring function

Energy model (Adelson & Bergen, 1985)

• At each point in the image, 
have simple cells with four 
types of receptive field

• Put each neuron’s output 
through a squaring function

• Add the squared outputs of 
the two rightward-selective 
neurons to give rightward 
motion energy

• This is a reasonable model 
of complex cells

• Do the same with the two 
leftward-selective neurons

• Then subtract leftward from 
rightward energy to give 
opponent energy

x

t

x x x

t t t
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Energy model (Adelson & Bergen, 1985)
x

t

x x x

t t t
• Linear receptive field 

followed by squaring is a 
model of simple cells

• Adding outputs of simple 
cells with odd- and even-
symmetric receptive fields is 
a model of complex cells

• Emerson, Bergen & 
Adelson (1992) showed that 
responses of direction-
selective complex cells in 
V1 of cat behaved much 
like non-opponent motion 
energy stage

• Qian & Andersen (1994) found 
evidence for motion opponency 
in MT

Energy model (Adelson & Bergen, 1985)
x

t

x x x

t t t
• Opponent energy signal 

increases with signal 
contrast

• To convert to a pure 
measure of velocity, divide 
the opponent energy by a 
static energy signal, S2, from 
neurons with non-directional 
receptive fields

• This results in a largely 
contrast-invariant velocity 
signal, like MT responses, 
which are selective for 
velcocity but don’t vary much 
with contrast (Rodman & 
Albright, 1987; Sclar, 
Maunsell & Lennie, 1990)
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What is motion?

• Change in position over time

What is speed?

• Rate of change of position

• Distance travelled in a unit of time

• where x is distance travelled
and t is time taken

x

t




• Speed is the gradient of the plot of 
distance against time

• e.g. miles/hour, metres/second

Gradients
• Intensity profile
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Gradients
• Intensity profile

• Intensity gradient = 
I

x




Gradients
• Intensity profile

• Intensity gradient = 
I

x




• With curved profile, gradient is 
different at each point 

• Our previous definition of gradient 
required two points, so how do we 
define the gradient at a point? 
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Gradients
• Intensity profile

• Intensity gradient = 
I

x




• With curved profile, gradient is 
different at each point 

• Our previous definition of gradient 
required two points, so how do we 
define the gradient at a point? 

• Start with two points 

Gradients
• Intensity profile

• Intensity gradient = 
I

x




• With curved profile, gradient is 
different at each point 

• Our previous definition of gradient 
required two points, so how do we 
define the gradient at a point? 

• Start with two points 

• Then gradually make x smaller
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Gradients
• Intensity profile

• Intensity gradient = 
I

x




• With curved profile, gradient is 
different at each point 

• Our previous definition of gradient 
required two points, so how do we 
define the gradient at a point? 

• Start with two points 

• Then gradually make x smaller

• As x approaches zero, I/x
approaches a limiting value, which 
we call the derivative, written Ix or     dI

dx

• The derivative is interpreted as the 
gradient, or rate of change, at that point

Gradients
• I is the Intensity profile
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Gradients
• I is the Intensity profile

• Ix is the rate of change of I as we move 
across space, x

Gradients
• I is the Intensity profile

• Ix is the rate of change of I as we move 
across space, x

• Ixx is the rate of change of Ix as we move 
across space, x

• It is the rate of change of I as we move 
across time, t

• Ixt is the rate of change of Ix as we move 
across time, t
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Velocity from intensity gradients
• Move in a positive direction across 

the image (rightwards)

• Our velocity across the image is
x

t




1

1

x x

t t

 
 

 
I x

t I

 
 

 
I I

t x

 
 

 

intensity gradient 
over time, It intensity gradient 

over space, Ix

• In reality, our analysis mechanisms stay 
still, and the image content moves

• Moving rightward across image is 
equivalent to staying still and having 
image move leftward (negative direction)

x
V

t




 • Image velocity is (Fennema & Thompson, 1979) t xI I  

Extended gradient model
t

x

I
V

I
  (Fennema & Thompson, 1979) 

• Problem with Fennema & Thompson’s algorithm is that velocity estimate 
gets very large and noise-sensitive when Ix gets close to zero

• We can derive an alternative estimate of velocity based on 2nd 
derivatives (see Bruce, Green & Georgeson textbook, Box 8.3):

xt

xx

I
V

I
 

• Johnston, McOwan & Buxton (1992) combined these two velocity 
estimates (see Bruce, Green & Georgeson textbook, Box 8.3):

2

2 2 2
x t xx xt

x xx

I I w I I
V

I w I


 



• Ix and Ixx rarely zero at the same point, so we don’t have the problem 
of division by zero
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Measuring spatial intensity gradients

• Spatial intensity gradient is essentially the difference in intensity 
across a certain distance in the image

• Can be measured using simple cell receptive fields

+–

• Positive gradients cause excitation, i.e. positive response

Measuring spatial intensity gradients

• Spatial intensity gradient is essentially the difference in intensity 
across a certain distance in the image

• Can be measured using simple cell receptive fields

• Negative gradients cause inhibition, i.e. negative response

+–
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Measuring spatial intensity gradients

• Spatial intensity gradient is essentially the difference in intensity 
across a certain distance in the image

• Can be measured using simple cell receptive fields

• Zero gradient gives zero response

• Temporal gradients can be measured in a similar way using 
spatiotemporal receptive fields

+–

• Spatial receptive fields are gradient operators

Gradient vs Energy Model
x

t

x x x

t t t

• Gradient model can be 
implemented with 
physiologically plausible 
receptive fields

• Output of the gradient 
model is mathematically 
equivalent to the “Velocity 
code” output of the Energy 
Model (see Adelson & 
Bergen, 1986; Bruce, Green 
& Georgeson textbook, Box 
8.4)
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Three equivalent models
• Energy model gives an insight into the role of the different physiological 

mechanisms (simple and complex cells in V1, motion opponent cells in 
MT)

• Gradient model gives a computational insight into why the normalized 
output of the energy model gives such a good estimate of velocity

• Elaborated Reichardt detector gives a formal link between motion 
perception in mammals and motion perception in insects

• Energy model correctly predicts perceived 
direction in the missing fundamental illusion 
(see Adelson & Bergen, 1985)

Three equivalent models
• Energy model gives an insight into the role of the different physiological 

mechanisms (simple and complex cells in V1, motion opponent cells in 
MT)

• Gradient model gives a computational insight into why the normalized 
output of the energy model gives such a good estimate of velocity

• Elaborated Reichardt detector gives a formal link between motion 
perception in mammals and motion perception in insects

• Energy model correctly predicts perceived 
direction in the missing fundamental illusion 
(see Adelson & Bergen, 1985)
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Missing fundamental motion illusion

1st frame

2nd frame

Missing fundamental motion illusion

Adelson & Bergen (1985)

1st frame

2nd frame
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Three equivalent models
• Energy model gives an insight into the role of the different physiological 

mechanisms (simple and complex cells in V1, motion opponent cells in 
MT)

• Gradient model gives a computational insight into why the normalized 
output of the energy model gives such a good estimate of velocity

• Elaborated Reichardt detector gives a formal link between motion 
perception in mammals and motion perception in insects

• Energy model correctly predicts perceived 
direction in the missing fundamental illusion 
(see Adelson & Bergen, 1985)

• Gradient model also predicts motion from 
“motionless” stimuli (e.g. Anstis, 1990)

Three equivalent models

• Gradient model also predicts motion from 
“motionless” stimuli (e.g. Anstis, 1990)

x

t




I I

t x

 
 

 

intensity gradient 
over time, It intensity gradient 

over space, Ix

illusory
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Aperture problem
• Each neuron is effectively looking at the world through a small hole or 

aperture (its receptive field)

• If you look at the world through a small hole, you are likely to 
misperceive the motion of objects in the world

Aperture problem
• Each neuron is effectively looking at the world through a small hole or 

aperture (its receptive field)

• If you look at the world through a small hole, you are likely to 
misperceive the motion of objects in the world
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Aperture problem
• Each neuron is effectively looking at the world through a small hole or 

aperture (its receptive field)

• If you look at the world through a small hole, you are likely to 
misperceive the motion of objects in the world

• Need to integrate motion signals from different parts of the image

Aperture problem



41

Aperture problem

Aperture problem
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Aperture problem

Aperture problem
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Aperture problem Constraint line

Intersection of constraints (IOC)

(from Movshon et al, 1985) 
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Can we solve IOC by vector averaging?

(from Movshon et al, 1985) 

No!

Moving plaid (Adelson & Movshon, 1982)

+ =

• Vector corresponding to the 
IOC lies between the motion 
vectors of the individual 
components, close or equal 
to the vector average

Type I plaid
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Moving plaid (Adelson & Movshon, 1982)

+ =

• Motion vectors from 
individual components both 
fall on the same side of the 
IOC vector, so vector 
average is very different from 
IOC vector

Type II plaid

Coherence (Adelson & Movshon, 1982)
• Plaid components can perceptually cohere or appear as two 

transparent patterns sliding over each other

• Probability of coherence decreases with

• decreasing stimulus contrast

• increasing component speed

• increasing angle between component directions

• increasing difference between component spatial frequencies
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IOC or vector averaging?
• Ferrera & Wilson (1990) showed that, for Type II plaids, perceived 

direction was not exactly in the IOC direction – slightly biased 
towards vector sum direction

• Yo & Wilson (1992) showed that the bias towards vector sum 
direction increased with

• decreasing stimulus duration

• decreasing stimulus contrast

• increasing eccentricity of viewing

• Wilson, Ferrera & Yo (1992) devised a model which doesn’t solve 
the IOC problem – it integrates the signals in such a way that it often 
appears to be doing intersection of constraints, but in other 
situations does not

• Bowns & Alais (2006) have argued that both vector averaging and 
IOC mechanisms exists in the visual system, and that these multiple 
solutions “compete to determine perceived motion direction” (p. 1170) 

Component vs pattern motion mechanisms
• Key advantage of moving plaids is 

that the plaid’s Fourier components 
generally move in very different 
directions from the coherent pattern 
formed from the combination of the 
two components

• This allows us to distinguish between 
mechanisms sensitive to motion of the 
low-level Fourier components and those 
sensitive to higher-level pattern motion

• Movshon, Adelson, Gizzi & Newsome (1985) recorded physiological 
responses to plaids and found

• V1 neurons were selective for low-level component motion

• Some MT neurons were selective for low-level component 
motion

• Other MT neurons were selective for high-level pattern 
motion
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Component vs pattern motion mechanisms
• Suppose we have a neuron selective for rightward component motion, 

and another selective for rightward pattern motion

Component 
neuron fires

Pattern 
neuron fires

=+

=+

Component vs pattern motion mechanisms

Movshon, Adelson, Gizzi & Newsome (1985)

Cat, area 17
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Component vs pattern motion mechanisms

Movshon, Adelson, Gizzi & Newsome (1985)

MT

Middle Temporal Area (MT) (also called V5)

• Discovered simultaneously 
by Dubner & Zeki (1971) 
and Allman & Kaas (1971)

• Zeki was working on 
macaques, and named it V5

• Allman & Kaas named it 
MT because it was in the 
middle of the temporal lobe 
of the owl monkey

• MT is nowhere near the 
middle of the temporal lobe in 
macaques or humans, but 
the name stuck

• Main input to MT is from V1
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Middle Temporal Area (MT) (also called V5)

• Discovered simultaneously 
by Dubner & Zeki (1971) 
and Allman & Kaas (1971)

• Zeki was working on 
macaques, and named it V5

• Allman & Kaas named it 
MT because it was in the 
middle of the temporal lobe 
of the owl monkey

• MT is nowhere near the 
middle of the temporal lobe in 
macaques or humans, but 
the name stuck

• Main input to MT is from V1
Component
selective

Component
OR
pattern
selective

Component vs pattern motion mechanisms

Movshon, Adelson, Gizzi & Newsome (1985) 
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Component vs pattern motion mechanisms

Rust, Mante, Simoncelli & Movshon (2006) 

Spatial integration of motion signals in MT

L – R

RL

L – R

RL

L – R

RL

L – R

RL

L – R

RL

Spatial pooling

• Each MT neuron pools responses from local motion detectors over a 
wide area, so it has a large receptive field

• Movshon, Adelson, Gizzi & Newsome (1985)
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When spatial integration goes wrong (1)

Pinna-Brelstaff illusion

Original version

(Pinna & Brelstaff, 2000)

Snowden, Thompson & Troscianko

Bruce, Green & Georgeson

Pinna-Brelstaff illusion

“Optimized” version

(Gurnsey et al., 2002)
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When spatial integration goes wrong (1)

Pinna-Brelstaff illusion
• Local motion detector suffers aperture 

problem; sees motion towards top right

• Component of motion away from 
centre intepreted as being caused by 
looming, so ignored

• That leaves upward motion component

• Results in illusory motion signal

• Similar thing happens with outer ring

• If motion cues for inner and outer 
rings were integrated, the illusion 
wouldn’t occur

• Configural cues perceptually 
segregate inner and outer rings 

• This is integrated with similar 
components from the other elements

When spatial integration goes wrong (1)

Pinna-Brelstaff illusion



53

When spatial integration goes wrong (1)

Pinna-Brelstaff illusion

When spatial integration goes wrong (2)

The barberpole illusion

• “Real” motion is leftwards

• Local motion is diagonal, towards 
top left

• Perceived motion is upwards

• Visual system uses motion of the 
terminators at the ends of the red-
white and blue-white edges to 
disambiguate motion

• There are more of these along the 
length of the tube, so their motion 
dominates perception
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When spatial integration goes wrong (2)

The barberpole illusion

• Five different shaped windows onto the same moving grating pattern

When spatial integration goes wrong (2)

The barberpole illusion

• Five different shaped windows onto the same moving grating pattern
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When spatial integration goes wrong (2)

The barberpole illusion

• Five different shaped windows onto the same moving grating pattern

When spatial integration goes wrong (3)

Infinite regress illusion

Tse & Hsieh (2006)

http://illusionoftheyear.com/2006/05/infinite-regress-illusion/
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When spatial integration goes wrong (3)

Infinite regress illusion

Tse & Hsieh (2006)

http://illusionoftheyear.com/2006/05/infinite-regress-illusion/

When spatial integration goes wrong (3)

Infinite regress illusion

• Local motion within each element is 
rightwards

• Global pattern motion is up and down

• Visual mechanisms in periphery 
combine these two signals to give 
diagonal motion

Tse & Hsieh (2006)

http://illusionoftheyear.com/2006/05/infinite-regress-illusion/
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When spatial integration goes wrong (4)

Curveball illusion (Shapiro Lu Huang Knight & Ennis, 2010)

• But the batter also perceives a sudden change of 
direction, called the “break”

http://illusionoftheyear.com/2009/05/the-break-of-the-curveball/

• In baseball, the pitcher applies spin to the ball

• This causes it to move in a smooth curve

• The break is an illusion

When spatial integration goes wrong (4)

Curveball illusion (Shapiro Lu Huang Knight & Ennis, 2010)

• But the batter also perceives a sudden change of 
direction, called the “break”

• When the ball is close to the batter it may move into 
peripheral vision

http://illusionoftheyear.com/2009/05/the-break-of-the-curveball/

• In baseball, the pitcher applies spin to the ball

• This causes it to move in a smooth curve

• The break is an illusion

• The batter starts off viewing the ball with central vision

• At that moment, the motion of the seam of the spinning 
ball starts to be interpreted as object motion, and a 
sudden change of direction is perceived
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When spatial integration goes wrong (5)

Motion capture (Ramachandran, 1987)

• If the pink square is exactly the same luminance as the background, it 
will appear to move with the pacman corners

When spatial integration goes wrong (5)

Motion capture (Ramachandran, 1987)

• If the pink square is exactly the same luminance as the background, it 
will appear to move with the pacman corners
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When spatial integration goes wrong (6)

Motion induction (Duncker, 1938)

• A stationary object surrounded by motion can appear to move in the 
opposite direction to the motion (i.e. opposite of motion capture)

• Put a sticker in the middle of the TV screen and watch a football 
match

• As the camera pans, the sticker appears to move in the opposite 
direction to the surrounding motion

Reconciling motion induction and capture

• Motion induction causes a stationary object to appear to move in the 
opposite direction to the surround

• Murukami & Shimojo (1993) present a model that accommodates 
both findings

• Motion capture causes a stationary object to appear to move in the 
same direction as the surround

• They show that motion capture happens best with small stimuli or in 
the periphery

• And motion induction happens best with large stimuli or in central vision
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Murukami & Shimojo (1993)
• Their model has MT-like units that pool 

direction signals over a wide area

• Centre and surround of pooling region 
tuned to opposite directions of motion

• For small stimuli (or stimuli in the periphery, where receptive fields are 
large), whole stimulus fits into centre, and motion of surround is pooled 
with stationary target, and target appears to move in same direction as 
surround (MOTION CAPTURE)

• Unit centred on target is stimulated by, e.g., 
target moving up or surround moving down

• Surround moving down has same effect 
on the neuron as target moving up

• Thus, surround moving down is misperceived as target moving up 
(MOTION INDUCTION)

• Neurons with surround tuned to opposite motion direction to centre have 
been found to MT (Born & Tootell, 1992)

Spatial integration after MT: MST
• Area MST contains neurons selective for complex motions such as 

expansion, rotation, and spiral motion (Duffy & Wurtz, 1991; Tanaka & 
Saito, 1989)

• These selectivities are not found in MT

• Provide information about self-motion through the environment



61

Spatial integration after MT: TPO

• Neurons selective for 
biological motion found in 
anterior part of superior 
temporal sulcus, particularly 
area TPO (Oram & Perrett, 
1994)

Spatial integration after MT: TPO

• Neurons selective for 
biological motion found in 
anterior part of superior 
temporal sulcus, particularly 
area TPO (Oram & Perrett, 
1994)
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Discounting eye movements
• Eye movements generate retinal motion signals, but the world doesn’t 

appear to move when we move our eyes

• The visual system must subtract the eye motion from the retinal 
motion

• How does the visual system know the eye motion?

Outflow theory: use a copy of 
the motor command signal 

(Helmholtz, 1866)

Inflow theory: Sense the eye 
movement directly 
(Sherrington, 1906)

Testing between inflow and outflow theories

• If you tap your eye, you cause retinal motion, with no motor command 
signal

Outflow theory: use a copy of 
the motor command signal to 

cancel retinal motion

Inflow theory: Sense the eye 
movement directly to cancel 

retinal motion

• Outflow theory predicts the world will appear to move

• Inflow theory predicts the world will appear to stay still

• Result of experiment: tapping your eye causes perceived motion
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Testing between inflow and outflow theories

• Immobilise eye, and try to move it

Outflow theory: use a copy of 
the motor command signal to 

cancel retinal motion

Inflow theory: Sense the eye 
movement directly to cancel 

retinal motion

• Outflow theory predicts the world will appear to move

• Inflow theory predicts the world will appear to stay still

• Result of experiment: Snowden, Thompson & Troscianko say that 
motion is perceived (Basic Vision, p. 176)

• Ernst Mach (1914) immobilised his eyes with putty and claimed to see 
motion when he tried to move his eyes

• William James (1891) tried it and didn’t see motion

• Immobilise eye with drugs that induce muscle paralysis

Stevens et al. (1976)
• John stevens underwent whole-

body paralysis

• So, across all the experiments, 
neither inflow nor outflow theory 
fully supported

• After attempted eye movements, he 
perceived spatial relocation of the 
visual world without the perception 
of motion
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Summary
• Motion aftereffect is evidence of directionally 

selective opponent processing

• Sometimes the visual system integrates the 
motion signals in inappropriate ways, 
leading to illusions of motion

• Due to the aperture problem, object motion 
perception requires motion signals to be 
integrated over a wide area

• Global pattern motion integrated in MT, and 
further integration occurs in MST and TPO

Summary – low-level local motion
• Three key models of low-level local motion perception

• These models account for motion illusions such as the missing 
fundamental illusion

• Since Gradient and Energy models can be equivalent, this explains 
why the energy model’s output is such a good estimate of velocity

• Motion Energy (Adelson & Bergen, 1985)

• Gradient model (Johnston, McOwan & Buxton, 1992)

• Elaborated Reichardt detector (van Santen & Sperling, 1984)

• The outputs of these models can be mathematically equivalent

• But they get the output in different ways

• Motion Energy model gives insight into roles of simple and complex 
cells in V1

• Gradient model derives a mathematically correct estimate of velocity
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Summary – Global motion
• Aperture problem is solved by integrating motion vectors from 

multiple components of the image

• Integration appears to proceed via both intersection of constraints and 
vector averaging

• The different solutions dominate in different situations

• The plaid is a very useful stimulus to investigate global pattern motion

• The plaid’s Fourier components generally move in very 
different directions from the coherent pattern formed from 
the combination of the two components

• This allows us to distinguish between mechanisms 
sensitive to motion of the low-level Fourier components 
and those sensitive to higher-level pattern motion

• Type II plaids make very different predictions for 
intersection of constraint and vector averaging models

• V1 neurons are sensitive to component motion

• Some MT neurons are sensitive to global pattern motion

Further reading
• Chapter 6 of Basic Vision (Snowden, Thompson & Troscianko) –

simple, entertaining introduction

• Anstis, S., Verstaten, F.A.J. & Mather, G. (1998). The motion 
Aftereffect. Trends in Cognitive Sciences, 2, 111–117

• Snowden, R.J. & Freeman, T.C.A. (2004). The visual perception of
motion. Current Biology, 14, R828–R831.  Warning: they get “inflow” 
and “outflow” theory the wrong way round throughout the paper!

• Albright, T.D. & Stoner, G.R. (1995). Visual Motion Perception. 
Proceedings of the National Academy of Sciences, 92, 2433–2440

• Zeki, S. (2004). Thirty years of a very special visual area, Area V5. 
Journal of Physiology, 557, 1–2

• Born, R.T. & Bradley, D.C. (2005). Structure and Function of Visual 
Area MT. Annual Reviews of Neuroscience, 28, 157–189
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Further reading
• Chapter 8 of Visual Perception (Bruce, Green & Georgeson)

• Adelson, E.H. & Movshon, J.A. (1992). Phenomenal coherence of 
moving visual patterns. Nature, 300, 523–525. 

• Movshon, J.A., Adelson, E.H., Gizzi, M.S., & Newsome, W.T. (1985). 
The analysis of moving visual patterns. In C. Chagas, R. Gattass, & 
C. Gross (Eds.), Pattern recognition mechanisms (pp. 117– 151). 
Vatican City: Vatican Press. 
http://www.cns.nyu.edu/~tony/Publications/movshon-adelson-gizzi-
newsome-1985.pdf
https://monkeybiz.stanford.edu/Moving%20Visual%20Patterns-1.pdf

• Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models 
for the perception of motion. Journal of the Optical Society of 
America, A, 2, 284–299. 

• Yo, C. & Wilson, H.R. (1992). Perceived direction of moving two-
dimensional patterns depends on duration, contrast and eccentricity. 
Vision Research, 32, 135–147.

• Bowns, L. & Alais, D. (2006). Large shifts in perceived motion direction 
reveal multiple global motion solutions. Vision Research, 46, 1170–1177.


